Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
PLoS One ; 17(5): e0268434, 2022.
Article in English | MEDLINE | ID: covidwho-1862269

ABSTRACT

The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats (Rattus norvegicus); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunity , Immunization , Lung , Nucleocapsid Proteins , Rats , Rats, Inbred Lew , Rats, Wistar , Recombinant Proteins , Spike Glycoprotein, Coronavirus , Vaccination
2.
Am J Physiol Heart Circ Physiol ; 318(5): H1084-H1090, 2020 05 01.
Article in English | MEDLINE | ID: covidwho-707207

ABSTRACT

The novel SARS coronavirus SARS-CoV-2 pandemic may be particularly deleterious to patients with underlying cardiovascular disease (CVD). The mechanism for SARS-CoV-2 infection is the requisite binding of the virus to the membrane-bound form of angiotensin-converting enzyme 2 (ACE2) and internalization of the complex by the host cell. Recognition that ACE2 is the coreceptor for the coronavirus has prompted new therapeutic approaches to block the enzyme or reduce its expression to prevent the cellular entry and SARS-CoV-2 infection in tissues that express ACE2 including lung, heart, kidney, brain, and gut. ACE2, however, is a key enzymatic component of the renin-angiotensin-aldosterone system (RAAS); ACE2 degrades ANG II, a peptide with multiple actions that promote CVD, and generates Ang-(1-7), which antagonizes the effects of ANG II. Moreover, experimental evidence suggests that RAAS blockade by ACE inhibitors, ANG II type 1 receptor antagonists, and mineralocorticoid antagonists, as well as statins, enhance ACE2 which, in part, contributes to the benefit of these regimens. In lieu of the fact that many older patients with hypertension or other CVDs are routinely treated with RAAS blockers and statins, new clinical concerns have developed regarding whether these patients are at greater risk for SARS-CoV-2 infection, whether RAAS and statin therapy should be discontinued, and the potential consequences of RAAS blockade to COVID-19-related pathologies such as acute and chronic respiratory disease. The current perspective critically examines the evidence for ACE2 regulation by RAAS blockade and statins, the cardiovascular benefits of ACE2, and whether ACE2 blockade is a viable approach to attenuate COVID-19.


Subject(s)
Betacoronavirus/physiology , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/virology , Coronavirus Infections/enzymology , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/enzymology , Angiotensin-Converting Enzyme 2 , Animals , Betacoronavirus/metabolism , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Humans , Male , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Rats , Rats, Inbred Lew , SARS-CoV-2 , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL